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An integro-differential equation is derived for the plane motion of a gas
under the action of a pressure on a piston, varying according to a power
law, This same equation describes the motion under the action of a sharp
blow, An expansion is found which provides a good approximation for the
solution of this problem.

Consideration is given to the behavior of the hydrodynamic quantities
close to the piston in a particular example where y = 7/5. It is shown
that, with the automodelling (similarity) exponent corresponding to a
sharp blow, in addition to the known solution of motion under the action
of a sharp blow, there exists a solution describing motion under the
action of a decreasing pressure on. the piston,

In her paper [ 1], Krasheninnikova considered the similar problem of
the motion of a gas under the action of a piston, the speed of which varied
according to a power law. In it the plane, cylindrical and spherical cases
were studied. We limit ourselves to the plane case. The choice of the
pressure on the piston as the determining parameter enables us to describe
at once a wide class of motions from the uniformly moving piston to the
so-called sharp blow [ 2-41, In a series of works [ 5-9] described in papers
by Weizsacker, the problem is considered of discovering a similarity
solution of the equations of hydrodynamics in the plane case, to which
solutions corresponding to arbitrary initial conditions would tend as time
increases indefinitely. The solution obtained in those papers coincides
with the solution which is called the "sharp blow®" solution in the papers
[2-4] and also in the present paper.

1. Statement of the problem. Let us consider the motion of a gas
under the action of a pressure p on a piston, decreasing or increasing
according to the power law:
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p=1It"" (I = Poto%) (1.1)

Here t is the time and I a certain constant. Such a motion for an
initially cold gas is a similarity (automodelling) motion. It is deter-
mined by the four parameters y, t, p, I, of which three have independent
dimensions (y is the coordinate, p, the density of the cold gas in front
of the piston). Let Y be the coordinate of the front of the shock wave
ahead of the piston. Then

av 5 Y+1p
a=P=V =
Hence .
_— lj:__! ,L’,, 2 . 1=
Y= 2 g e (1.2)

Here we have first made use of the fact that it is a similarity motion,
since we have assumed that the pressure at the front of the shock wave
depends upon time in the same way as the pressure on the piston, differ-
ing from it only in the values of the constants I and I°.

let us raise equation (1.2) to the power n = 2a /(2 ~ a) and, making
use of (1.1), we obtain

; 1 2 \""
p= oy, A= (YL 2 U

Let y be the Lagrangian coordinate. Introducing the independent vari-
able x = y/Y, varying between the limits O and 1, we can represent the
pressure, velocity and density in the form

p=ApY " j(x), u=VAY "p(z), p=pyg () (1.3)

At the front of the shock wave, x = 1. let us choose the function f(x)
so that f(1) = 1. Then v(1) = v/ 2/(y + 1). Using the equations of gas
dynamics in Lagrange's form, we can obtain a system of equations for f,

v [3] L
S 1 :
==V S Greaen
and an explicit relationship for the reduced density ¢:
=11 @ (1.5)

Integrating the second equation (1.4) under the condition that
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v(1) = 2/(y + 1), we have

1
- fx+1 Y—i npy ¥ dp— Y
v l/Y+1] t &(x/) dz

1
L) *} (1.6)

Substituting v in the first equation (1.4), we obtain the fundamental
equation of the problem under consideration

1 _1 -
T —Fa=DEn) Tt ga— (3 —1)zen T+
+ [Y 1 (x"]‘)— 7;ril+2_ 1]3_2 =0 (1.7)

with the boundary condition f = 1 when x = 1.

2. Solutions for certain individual cases. Let us try to solve
the problem for all values of y and n. Let us investigate the general
behavior of the function f(x) for different values of n. If the pressure
on the piston falls, then the pressure in the gas will decrease from the
shock wave to the piston the more sharply, the faster the rate of press-
ure drop on the piston. If n = 0, i.e. for constant pressure, f = const=
1. Accordingly, the set of solutions for an arbitrary value of y and all
values of n can be represented in the form of a pencil of curves radiat-
ing from the point f = 1, x = 1 (Fig. 1).
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The horizontal line corresponds to n = 0, i.e. constant pressure. The
curves lying above correspond to negative values of n, 1i.e.the pressure
on the piston increases with time.

As n increases, the ratio of the pressure at the shock to the pressure
on the piston increases. For a certain value of n the pressure on the
piston (more precisely, at the point x = 0) becomes equal to zero and
the ratio p(1)/p(0) tends to infinity.

Such a pressure distribution corresponds to a sharp blow, as defined
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in Zel'dovich’s paper [2].

We shall now seek values of y and n for which analytic solutions exist.
Let us consider the limiting case y = 1. Such a substance will be called
"isothermal". For this the equation takes the form:

df _n
=7 (2.1)

The solution satisfying the boundary condition f(1) = 1 is
1
f=1+5n(x—1) (2.2)

Let us turn to the other limiting case of an incompressible liquid,
i.e. y = c. For this it is convenient to pass from y to the limiting com-
pression h, where y = (h + 1)/(h — 1). Then equation (1.7) takes the form

1 h—1 h—1
_n s ke
gh—g\@n Mo+ 5726 T4
2h
Gy
(=) [ g (@) PFamte 1] 2L =

Carrying out the necessary transformations and making h » 1, we obtain
the equation for incompressible fluid

1

%(x+1)+'%(x—i)+%[gln/dx+x1nf]_(1_§;_)%=o (2.3)

At the point x = 1 the value of the derivative df/dx = 2n. Consequently,
at points close to x = 1, we have

f=1+2n(z—1)+... (2.4)

Comparing the expression so obtained with formula (2.2), we see that,
for a given value of n, the curves describing the variation of pressure
in gases with different adiabatic indices y leave the point x = 1 in the
form of a pencil (Fig. 2), bounded in the neighborhood of x = 1 by the

!
1
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Fig. 2.,

straight lines with slopes 1/2nand 2n, corresponding to the two limiting
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cases y = land y =

Let us put f = 2%, which corresponds to the case of a sharp blow,
since f = 0 when x = 0,

Substituting f = x% in equation (1.7), we have

[ 4q =B ]+

Y—n—4a&
n-t-a

—i'(“r—i)[’,:(m-l-*——i)-—z—{] Y _aze=0

In order to satisfy this equation, it is necessary to assume that

n+ta =D~
P a1, 44— XTUY ¢
' v * ! yon—e (2.5)

R e e R L

o=t gt =

a=0]im= 7Y+l =0

The system of equations (2.5) is self-contradictory and does not give
any new solution. The system (2.6) at once gives the already known result:

1=1, n=2

Putting y £ 1, we obtain for y the equation 5y ~ 12y + 7 = 0, which
has for its roots 1l and 7/5.

or

(2.6)

Using the expressions (1.5) and (1.6), we obtain formulas for the
complete set of hydrodynamic quantities:

f=z,  q=06a, =%l/..( ___7 (2.7)

This solution was obtained by Hoerner [ 7], Hafele [ 9] and also by
Zhukov and Kazhdan [ 4].

Accordingly, equation (1.7), describing the motion of a gas under the
action of a pressure on a piston, varying according to a power law, has
solutions represented by pencils of curves starting from the point x = 1,
f = 1. Moreover, to each value of the parameter n, characterizing the
rate of change of the pressure on the piston, there corresponds its own
pencil containing the solutions relating to all possible values of the
adiabatic index fromy = 1 to y = =, The smaller the parameter n in
absolute magnitude, the narrower is the pencil. When n = 0 the pencil
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degenerates into a straight line,

Examples of the form and distribution of such pencils in the x, f
plane are illustrated in Fig. 3.
f
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Fig. 3.

All the curves relating to a definite value of n lie in the confines
of the angle formed by the lines

f=1+in@—1), f=1+2n(@=—1)

Moreover, amongst this set of solutions there is a solution f = 1+
(x = 1), which corresponds to y = 7/5 and n = 4/3.

All these considerations lead us to expect that a good description of
the solution of equation (1.7) in a wide range of values of y and n can
be achieved by the first few terms in the expansion of the function f(x)
as a Taylor series near the point x = 1.

Let us write down the first four terms of this expansion:

n y—1 n
=t e+ 3 1S e+ nfe—trt
+ = 6 (Y+1)’ {2(127’—11'{+1)—%~ n (35yT— 19y — 2) +
2 n y—1
+ nT(ﬂiy’— 59y + 4)} (z—1P® + ATV {6 (29y3 — 4Ty* 4 10y — 1) —
]
— 1 (T84y" — 1043Y? + 272y + M) + 7 (4159y® — 4876y? — 1165y — 24) —

3
— o (3419y8 — 3762y" + 8557 + 8)} @E—1)8 ... @.8)
This expansion solves the problem with a sufficient degree of accuracy

for practical purposes for all y and n in the case of decreasing pressure,
and for small y and n in the case of increasing pressure.
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From a comparison of the results of exact numerical computation of
equations (1.4) with the expansion formula (2.8), it follows that the
smaller the value of n and the closer y lies to unity, the more exact is
the expansion. If n < 2/3 and y < 2 we can limit ourselves to three terms,
whilst for even smaller y and n we can take just the first two terms of
the expansion. This expansion can, moreover, be used for finding the
greatest possible value of n for any given y, i.e. the value of n corres-
ponding to the sharp blow. In fact, taking the expressions for f, con-
taining one and then two, three and four terms of the expansion, and
putting them equal to zero when x = 0, we obtain equations for the first,
second, third and fourth approximations, respectively, to the parameter
n for the sharp blow. The value of n varies between the limits n = 1.117
for y = o (incompressible fluid) to n= 2 for y = 1 ("isothermal® sub-
stance). In his paper Hafele presented values of the quantity % n/(2+ n)
for four values of y obtained by numerical methods: y = 1.1, & 0.43112;
y= 1.4, k= 0.4; y = 5/3, k= 0.38927;, y = 2.8, k= 0.343296.

n

1

From the expansion (2.8) for f we can obtain the density, using the
explicit relation (1.5), and the velocity by means of the quadrature
(1.8). We notice that from formula (1.5) it follows immediately that the
density at the piston is equal to zero for positive n and infinite for
negative n,

3. The construction of similarity solutions. The particular
case n = 1, a = 2/3 coincides with the known solution of Sedov [ 10] for
a strong explosion in plane variant. In fact, in this solution the press-
ure at the shock and in the whole region decreases as t=2/3, In Sedov's
solution the motion is considered of a gas on both sides of a plane, at
which there is an instantaneous introduction of energy. By virtue of
symmetry, the plane at which the energy is introduced remains motionless.

This solution can be interpreted as describing the motion of gas under
the action of a pressure on a piston decreasing as t~2'>. The piston for
such a motion remains motionless. It is evident that such a motion is the
borderline between motions of two classes: the first with a < 2/3 and
n < 1, for which the piston moves in the direction of the general motion
of the gas (the velocity of motion of the gas in this case does not any-
wvhere vanish); and the second witha > 2/3 and n > 1, including the case
of the sharp blow, for which the piston is withdrawn (in this case the
velocity of the gas vanishes at a certain point, the gas moving in both
directions).

In order that the motion be similar, the pressure must vary with time
according to the law p = It~ @,

For negative values of a, according to this law the pressure is equal
to zero at the instant t = 0 and thereafter increases proportionally to
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tlal. Such behavior of the pressure as a function of time can be realized
in practice, and therefore the motion with the pressure on the piston 1in-
creasing according to the power law is a similarity flow from the moment

of its inception. For positive values of a the pressure at the instant

t = 0 is infinite and thereafter falls off approximately as t™¢,

The infinite pressure at the instant t = 0 cannot be realized. In a
practical problem we have to assume, for example, that a pressure with
amplitude pg acts until the time t,, after which it falls according to
the law p = It7%.

Let us determine the energy imparted to the gas by the piston during
the duration of the motion. In the plane case E~ px, where x is the length
of the region covered by the motion, p~t ¢, x~ ut~ 172/ 2304 con-
sequently E~ t13a/2,

The energy delivered by the piston in the duration of the flow with

constant pressure is EO’\'tol_Ba/Z, 1f we assume that po'\/to"l.

Hence it follows that when a < 2/3 the energy delivered Ly the piston
in the process of the motion according to the law ™% increases indefin-
itely with time. Accordingly, the fraction of the energy of the gas
acquired by the gas during the time of the constant pressure on the piston
tends to zero. From this it follows that the motion hecomes a similarity
flow when E >> EO or t > t.. In the case a = 2/3, the piston, on which
the pressure is falling as t"2/3, does not impart energy to the gas - 1t
just imparts an impulse. The energy in the gas 1s acquired during the
time of the first shock.

This case is described by Sedov’s solution. Sedov also showed that, Ly
the time t >> t., the motion becomes a similarity flow. Finally, 1f a 1s
greater than 2/% and less than the value of a 1n the case of the sharp
blow, then energy is imparted to the gas in the first shock and thereafter
is removed by the piston in the process of its backward motion. Accord-
ingly, in this case the motion for the whole of its duration is essentially
determined by two characteristic parameters: the energy imparted Ly the
first shock and the quantity I in the formula p = It™®, determining the
‘pressure on the piston. Therefore, without special study, it is impossible
to say whether a similarity flow is set up in this case. The establishment
of a similarity flow in the case of the sharp blow was demonstrated by

Zel'dovich [ 2], Zhukov and Kazhdan [ 4].

4. The behavior of the hydrodynamic quantities close to the
piston. Let us consider in more detail the behavior of the hydrodynamic
quantities near the piston in the case of a motion with n > 1 or a > 2/3.

For this we shall make use of certain results from paper [3]. In the
latter paper equations (1.4) were reduced for the study of the sharp bhlow
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to the single equation

y—1 y—1 ny Vm
— 43y g — 2
G V‘A(Y+1)n 7 (n-+2)u 5 - u?z+tyuz

T gy T e Y

(4.1)

by means of the substitutions

Y 2y—n ¥  y—n—1
1
f= 2ttt v=uz"tlg ¥

Here the integral curve corresponding to the sharp blow was found from
the condition that it passes through the singular point of the equation.
The singular point in the variables u, z has the coordinates

u=—2VIxF1,  z=(—1)/2

Let us pass now to the independent variable x and the function f. The

relation between these quantities at the singular point is
Y.
y¥i 2=n
1"
=% = (4.2)

If we know the lLehavior of the pressure f(x) in the case of the sharp
blow, then we can find x corresponding to the singular point. This
singular point 1s a saddle. One of the separatrices of the saddle is the
integral curve corresponding to the sharp blow. In this case all the
hydrodynamic quantities at the singular point are continuous and smooth.

On the other hand, we can consider the singular point as the site of
a weak discontinuity and continue the function f(x) beyond the singular
point along the other separatrix. It is then found that f(x) increases
with decreasing x and is equal to a finite quantity when x = 0. This
branch 1s the solution of the problem of motion under the action of a
pressure on the piston decreasing according to the law p = It™%, where
a =2n/(2 + n) and n is the index of the similarity solution for the
sharp blow. The fact that the solution with the other separatrix corres-
ponds to the piston is confimmed by the following argument. In the case
n = 1 the piston moves backwards (the velocity is negative), slowing
down. This means that du/dt > 0. Then from the equation of motion Ju/dt =
- po“1 dp/dx, it follows that dp/dx < 0. Accordingly, the general shape
of the pressure profile from the shock front to the piston is not mono-
tonic. The pressure profile from the shock front to the piston first of
all decreases, then passes through a minimum, and increases again close
to the piston. In fact, 1f we choose the solution for the motion with the
piston, a figure is obtained in the form of a broken curve, consisting of
two separatrices. As an example, we can cite the case y = 7/5, which is
convenient as there 1s an analytical solution for this case.
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The singular point in the u, z variables has coordinates u = - 2y 5/6,
=1/7, f= (1/7)7/12111/18, and since in the given case f = x, then
x = (1/7)3/2 £ 0.054,

N
I

The branch corresponding to the piston has no analytical solution.

From numerical computations it follows that f(x) increases from f=0.054
at the singular point to f = 0.11C1 at the piston. lLet us notice that
dp/dx = 0 at the piston in the case n = 1 {Sedov’s case) and dp/dx > 0
when n < 1.

Accordingly, the pressure profile fails to be monotonic only when

1< n < n,, where n, corresponds to the sharp blow.

1
Let us explain the physical significance of the singular point. For

this, we must make a transformation from Lagrangian coordinates to

Eulerian. Let & be the ratio of the running Fulerian coordinate to the

coordinate of the shock front; the transformation formula 1is
1

d‘
=1-{< (4.9
For the case y = 7/5 and n = 4/3, substituting q =62%/3, we obtain
— s o~
E——%—%ﬂ« ) x = (5 —4£)~7 4.4)

For the hydrodynamic quantities and tlie adialiatic velocity of sound
we obtailn

i t -5
/" (5-45)% ’ q (5_4@-/,

o=/ 3 (2%--1), c=) Z(5—4) (4.5)

Let z and Z be the running Fulerian coordinate and that of the shock

front, so that £ = z/Z. It is known that 7 = Atl’a/z,
7 At L
A_At7 E"‘Z At'/'
The constant A is not difficult to find, using the relations at the
front of the shock wave,
iz 3

« - 2/’5
dt 5 At

On the other hand,

dZ o . 6,
=D = N

Hence A = v/ 10/3 and

PR VTN (4.6)
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Now let us construct the z -t diagram, on which we shall indicate
certain &-curves and the field of characteristics. Let us write down the
equation of that family of characteristics which carries disturbances to

the shock front:

dz
T Ut

We have

.4
2

% =@ +Fe@lt (4.7)

In the case under consideration, equation (4.7) takes the form

& _[VE&x—0+VE6—4 " (4.8)

Giving ¢ various actual values, we shall obtain the equations of the
£-curves and the slopes of the characteristics at their intersection with
the corresponding £-curves. Putting & = 1 in formula (4.6), we obtain the
equation of the shock front:

— 110 %
Z—Vst

and the slope with which the characteristics intersect the shock front:

=(Ve+VE) e

The equation of the point at which the motion 1is generated is also
represented by the &-curve itself, with £ = 0. The characteristics cut

1t with slope: _ .
=[-Ve+V i
At the singular point & = — 1/2. For the corresponding &-curve,

S VI EeyEe

Accordingly, the slope of the characteristic coincides with the slope
of the {-curve itself, i.e. the £-curve corresponding to the singular
point 1s a characteristic.

In Fig. 4 is represented the form of the field of characteristics for
the case y = 7/5 and n = 4/3 (the curve 1 is the front of the shock wave,
curve 2 is the £-curve on which dz/dt = 0, curve 3 is the characteristic
coinciding with the &-curve, and curve 4 is the cavitation front).

It follows from this field of characteristics that all disturbances,
other than shock waves, originating to the left of the curve & = - 1/2,
do not penetrate the region to the right of this curve and do not reach
the shock front. Accordingly, the region as far as the curve & = - 1/2
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on the left can be added not only to the solution corresponding to motion
with a piston, but also to the solution corresponding to the sharp blow.
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We notice that the branching point slides along the curve f(x) as y
varies. For incompressible fluid (y = e) it occurs very close to the front
(x ~0.3), whilst for an "isothermal" substance (y = 1) it disappears.

The pressure at the front of the shock wave cannot fall off more rapidly
than for the sharp blow, even if the pressure at the piston undergoes a
more rapid fall. This follows from the fact that the curves describing the
solution when n > n, of the sharp blow, on leaving the point (1.1), are
located below the curve for the sharp blow and, failing to reach the piston
(x = 0), turn in the direction of increasing x, as depicted in Fig, 5.
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Fig. 5.

Here curve 1 is the branch corresponding to the piston, curve 2 is the
branch corresponding to the sharp blow, curves 3 and 4 are branches without
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physical significance.

The dashed curve is the continuation in the direction of increasing x
of the solution describing the motion with a piston when n = n,. A certain
physical significance can be ascribed to the branches of these solutions
from the point (1.1) up to the turning point. They correspond to the
motion which is generated by the action of a sharp blow and such that the
gas just behind the shock wave is accompanied by a reservoir capable of
absorbing the gas. Moreover, the velocity of this motion is such as to
conserve the fraction of gas absorbed by this reservoir, relative to the
quantity of gas engulfed by the shock wave, and this i1s numerically equal
to the coordinate x of the turning point.

Different velocities of the motion and different fractions of the gas
correspond to solutions with Aifferent values of n. Such motions are
realized, for example, in the case of a semi-infinite pipe. If a sharp
blow impinges on the gas in the pipe from the open end, then a shock wave
is propagated along the gas in the pipe, whilst material flows out of the
open end of the pipe. Here the space outside the pipe constitutes the
reservoir in which the gas is absorbed. In this case the turning point
has the Fulerian coordinate £ = 0, i.e. the reservoir is stationary at
the point where the motion is generated.

In conclusion, the authors express their thanks to I.V. Potugin, V.E.
Troshchiev and G.A. Grishin for carrying out the numerical computations,
and to M.A, Podurts for taking part in discussions on the work. The
authors take this opportunity of thanking Ya.B. 7Zel’dovich for partaking
in discussions and for a number of important comments.
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