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An integro-differential equation is derived for the plane motion of a gas 
under the action of a pressure on a piston, varying according to a power 
law. This same equation describes the motion under the action of a sharp 
blow. An expansion is found which provides a good approximation for the 
solution of this problem, 

Consideration is given to the behavior of the hydrodynamic quantities 
close to the piston in a particular example where y = 715. It is shown 
that, with the automodelling (similarity) exponent corresponding to a 
sharp blow, in addition to the known solution of motion under the action 
of a sharp blow, there exists a solution describing motion under the 
action of a decreasing pressure on the piston. 

In her paper [ 11, Krasheninnikova considered the similar problem of 
the motion of a gas under the action of a piston, the speed of which varied 
according to a power law. In it the plane, cylindrical and spherical cases 
were studied. We limit ourselves to the plane case. The choice of the 
pressure on the piston as the determining parameter enables us to describe 
at once a wide class of motions from the uniformly moving piston to the 
so-called sharp blow [ 2-41. In a series of works [ 5-91 described in papers 
by Weizsacker, the problem is considered of discovering a similarity 
solution of the equations of hydrodynamics in the plane case, to which 
solutions corresponding to arbitrary initial conditions would tend as time 
increases indefinitely. The solution obtained in those papers coincides 
with the solution which is called the “sharp blow” solution in the papers 
[ 2-41 and also in the present paper. 

1. Statement of the problem. Let us consider the motion of a gas 
under the action of a pressure p on a piston, decreasing or increasing 
according to the power law: 
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p = It-= u = Pokicl) (1.1) 

Here t is the time and .l a certain constant. Such a motion for an 

initially cold gas is a similarity (automodelling) motion. It is deter- 

mined by the four parameters y, t, p, I, of which three have independent 

dimensions (y is the coordinate, p. the density of the cold gas in front 

of the piston). Let Y be the coordinate of the front of the shock wave 

ahead of the piston. 'Ihen 

!!$&{*+,p, 

Hence 

(1.2) 

Ilere we have first made use of the fact that it is a similarity motion, 

since we have assumed that the pressure at the front of the shock wave 

depends upon time in the same way as the pressure on the piston, differ- 

ing from it only in the values of the constants I and I'. 

Let us raise equation (1.2) to the power n = 2a /(2 - a) and, making 

use of (l.l), we obtain 

p = &Y-n, 

Let y be the Iagrangian coordinate. Introducing the independent vari- 

able n = y/Y, varying between the limits 0 and 1, we can represent the 

pressure, velocity and density in the form 

p c Ap,Y-"j(s), u = 'r/_;i Y+%(z), P - PO!?@) (1.3) 

At the front of the shock wave, x = 1. Let us choose the function f(x) 

so that f(1) = 1. Then v(1) = \/ 2/( y + 1). Using the equations of gas 

dynamics in Lagrange's form, we can obtain a system of equations for f, 
v c31 

i 

-- 
2 df +I+$= -- 

y+ldx 
1 (1.4) 

dv 
-- 

y -z- 
dz 

and an explicit relationship for the reduced density 7: 

Integrating the second equation (1.4) under tile condition that 
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u( 1) = d 2/(y + l), we have 

2fy+l Y--i1 
1 

v= _-__ If Y+d 2 
2 s (1.6) 

, x 

Substituting v in the first equation (1.4), we obtain the fundamental 

equation of the problem under consideration 

-- ;(y+l)-+l)\(zy) :dx+;(7_1)(+-1)x(x~~-~+ 
x 

1 
----i 

Y?Jy+2_1 -_=o 1 df 
dx (1.7) 

with the bounllary condition f = 1 when II = 1. 

2. kSolutions for certain individual cases. Let us try to solve 

the problem for all values of y and R. Let us investigate the general 

behavior of the function f(x) for different values of n. If the pressure 
on the piston falls, then the pressure in the gas will decrease from the 
shock wave to the piston the more sharply, the faster the rate of press- 

ure drop on the piston. If ,n = 0, i.e. for constant pressure, f = const= 
1. Accordingly, the set of solutions for an arbitrary value of y and all 
values of n can be represented in the form 
ing from the point f = 1, n = 1 (Fig. 1). 

The horizontal line corresponds to n = 0, i.e. constant pressure. The 
curves lying above correspond to negative values of n, i.e. the pressure 
on the piston increases with time. 

t’ 
I ___-__ 
RI 

0’ I , z 
1 

Fig. 1. 

of a pencil of curves radiat- 

As n increases, the ratio of the pressure at the shock to the pressure 
on the piston increases. 

piston (more precisely, 
For a certain value of n the pressure on the 

at the point x = 0) becomes equal to zero and 
the ratio p(ll/p(Ol tends to infinity. 

Such a pressure distribution corresponds to a sharp blow, as defined 
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in Zel'dovich's paper [2]. 

We shall now seek values of y and n for which analytic solutions exist. 

Let us consider the limiting case y = 1. Such a substance will be called 

"isothermaln. For this the equation takes the form: 

dt n 
--zzT 

dx L 
(2.1) 

Ihe solution satisfying the boundary condition f(1) = 1 is 

f=1+&2(5-1) (2.2) 

Let us turn to the other limiting case of an incompressible liquid, 

i.e. y = m. For this it is convenient to pass from y to the limiting com- 

pression h, where y = (h + l)/(h - 1). 'lhen equation (1.7) takes the form 

h-i h-1 -- 

h+l ds + ; s z (Pf) 
-- 

h+l + 

+(h-l)[-&(C7?~) 
-_ 
&?+s_ +!&, 

carrying out the necessary transformations and making h + 1, we obtain 

the equation for incompressible fluid 

At the point x = i the value of the derivative df/dx = 2n. Consequently, 

at points close to x = 1, we have 

f=lf2n(a:-I)+... (2.4) 

Comparing the expression so obtained with formula (2.2), we see that, 

for a given value of n, the curves describing the variation of pressure 

in gases with different adiabatic ‘indices y leave the point n = 1 in the 

form of a pencil (Fig. 2), bounded in the neighborhood of z = 1 by the 

f 

1 ---_-- 

I 

0 krl- I 

c 

1 

Fig. 2.. 

straight lines with slopes 1/2nand 2n, corresponding to the two limiting 
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cases y = 1 and y 

Let us put f = 

= 00. 

P, which corresponds to the case of a sharp blow, 

since f = 0 when x = 0. 

Substituting f = xa in equation (1.7), we have 

$7 r +I-- CT--ffY 
y--n--a + 1 

,-(7-l)[+(y_,y_a +~-l)-,-~]x~-~-ax’-l=O 
In order to satisfy this equation, it is necessary to assume that 

n-t-= 
I Y 
-. _.-.- =a-_i, 7+1 -,+“y, =o 

h-~)[;(,_:_~ ++-lj+G]=a 
(2.5) 

The system of equations (2.5) is self-contradictory and does not give 

any new solution. ‘Ihe system (2.6) at once gives the already known result: 

r= 1, n=2 

Putting y f 1, we obtain for y the equation 5 y2 - 12 y + 7 = 0, which 
has for its roots 1 and 7/S. 

Using the expressions (1.5) and (1.61, we obtain formulas for the 

complete set of hydrodynamic .quantities: 

f = 2, q = 6x’/*, 

Ihis solution was obtained by Hoerner [ 71 , Hafele [ 91 

Zhukov and Kahdan f 41. 
and also by 

Accordingly, equation (1.71, describing the motion of a gas under the 
action of a pressure on a piston, varying according to a power law, has 
solutions represented by pencils of curves starting from the point x = 1, 

(2.7) 

f = 1. Moreover, to each value of the parameter n, characterizing the 

rate of change of the pressure on the piston, there corresponds its own 
pencil containing the solutions relating to all possible values of the 
adiabatic index from y = 1 to y = m. ‘lhe smaller the parameter n in 
absolute magnitude, the narrower is the pencil. Men rt = 0 the pencil 
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degenerates into a straight 

Examples of the form and 

Adamsk i i and N.A. Popov 

line. 

distribution of such pencils in the x, f 
plane are illustrated in Fig. 3. 

All the curves relating to a definite value of n lie in the confines 
of the angle formed by the lines 

)X / 
I 

Fig. 3. 

f- 1 ++5-1), f= 1+2n(s-1) 

Moreover, amongst this set of solutions there is a solution f = 1 + 

(x - l), which corresponds to y = 7/S and n = 4/3. 

All these considerations lead us to expect that a good description of 

the solution of equation (1.7) in a wide range of values of y and n can 

be achieved by the first few tenns in the expansion of the function f(n) 
as a Taylor series near the point n = 1. 

Let us write down the first four terms of this expansion: 

f=i+n~(‘-1)+;(~{5Y-~-~(5y+2) (z-i)‘+ 1 
+ + ($j$ (2 (12y’- fly + I) - f n (35y2- 19y - 2) + 

+ T (My’- 59y + 4)) (z - 1)s + & (& (6 (29ua - 47y’ + 19y - i) - 

_ ,, (7aya _ 10451’ + 272~ + Ii) + c (4t5w - 4676~~ - 1165y - 24) - 

- ; (3419yS - 3762~3 + 655~ -j- 8)} (z - I)’ + . . . (2.8) 

This expansion solves the problem with a sufficient degree of accuracy 

for practical purposes for all y and n in the case of decreasing pressure, 
and for small y and n in the case of increasing pressure. 
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From a comparison of the results of exact numerical computation of 

equations (1.4) with the expansion formula (2.8), it follows that the 

smaller the value of a and the closer y lies to unity. the more exact is 

the expansion. If a < 2/3 and y < 2 we can limit ourselves to three terms, 

whilst for even smaller y and n we can take just the first two terms of 

the expansion. This expansion can, moreover, be used for finding the 

greatest possible value of a for any given y, i-e. the value of n corres- 

ponding to the sharp blow. fn fact, taking the expressions for f. con- 

taining one and then two, three and four terms of the expansion, and 

putting them equal to zero when x = 0, we obtain equations for the first, 

second, third and fourth approximations, respectively, to the Parameter 

n for the sharp blow. The value of n varies between the limits n = 1.117 

for y = m (incompressible fluid) to n = 2 for y = 1 (“isothermal” sub- 

stance). In his paper Hafele presented values of the quantity k = n/(2+ n) 

for four values of y obtained by numerical methods: y = 1.1, k = 0.43112; 

y = 1.4, k = 0.4; y = 5/3. k = 0.38927; y = 2.8, k = 0.343296. 

From the expansion (2.8) for f we can obtain the density, using the 

explicit relation (1.5). and the velocity by means of the quadrature 

(1.6). We notice that from formula (1.5) it follows immediately that the 

density at the piston is equal to zero for positive n and infinite for 

negative n. 

3. The construction df similarity solutions. The particular 

case n = 1, cz = 213 coincides with the known solution of Sedov [lo] for 

a strong explosion in plane variant. In fact, in this solution the press- 
ure at the shock and in the whole region decreases as t -2/7. In Sedov’s 
solution the motion is considered of a gas on both sides of a plane, at 
dlich there is an instantaneous introduction of energy. By virtue of 

symmetry, the plane at which the energy is introduced remains motionless. 

This solution can be interpreted as describing the motion of gas under 

the action of a pressure on a piston decreasing as t -2’j. The piston for 
such a motion remains motionless. It is evident that such a motion is the 
borderline between motions of tm, classes: the first with a < 2/3 and 

n < 1, for which the piston moves in the direction of the general motion 

of the gas (the velocity of motion of the gas in this case does not any- 
where vanish); and the second with a > 213 and n > 1, including the case 
of the sharp blow, for which the piston is withdravm (in this case the 

velocity of the gas vanishes at a certain point, the gas moving in both 
directions). 

In order that the motion be similar, the pressure must vary with time 
according to the law p = It-O. 

For negative values of a, according to this law the pressure is equal 
to zero at the instant t = 0 and thereafter increases proportionally to 



800 V.B. Adanskii and N.A. Popov 

tl al. Such behavior of the pressure as a function of time can be realized 
in practice, and therefore the motion with the pressure on the piston in- 

creasing according to the power law is a similarity flow from the moment 

of its inception. For positive values of a the pressure at the instant 

t = 0 is infinite and thereafter falls off approximately as tbs. 

Ihe infinite pressure at the instant t = 0 cannot be realized. Tn a 

practical problem we have to assume, for example, that a pressure with 

amplitude p0 acts until the time tO, after which it falls according to 

the law p = Itma. 

Let us determine the energy imparted to the gas by the piston during 

the duration of the motion. In the plane case E-px, wh;z/: is the length 

of the region covered by the motion, p-t-, X-ut- t and con- 

sequently E-t1-3a’2. 

‘Ihe energy delivered by the piston in the duration of the flow with 

constant pressure is E -to I-3a/2 -1 
Cl , if we assume that pow to . 

Hence it follows that when a < 2/3 the energy delivered by the piston 

in the process of the motion according to the law t* increases indefin- 

itely with time. Accordingly, the f raction of the energy of the gas 

acquired by the gas during the time of the constant pressure on the piston 

tends to zero. From this it follows that the motion becomes a similarity 

flow when E >> E, or t >> to. In the case a = 2/3, the piston, on which 

the pressure is falling as t -2’3 does not impart energy to the gas , - it 

just imparts an impulse. The energy in the gas is acquired during the 

time of the first shock. 

This case is described by Sedov's solution. Sedov also showed that, 1)~ 

the time t >> t 
greater than 2/ 5’ 

the motion becomes a similarity flow. Finally, if a is 

and less than the value of a in the case of the sharp 

blow, then energy is imparted to the gas in the first shock and thereafter 

is removed by the piston in the process of its backward motion. Accor,l- 

ingly, in this case the motion for the whole of its duration is essentially 

c:etermined by two characteristic parameters: the energy imparted by tllp 

first shock and the quantity I in the formula p = Itma, determining the 

'pressure on the piston. Therefore, without special study, it is impossiljle 

to say whether a similarity flow is set up in this case. The establishment 

of a similarity flow in the case of the sharp blow was demonstrate11 by 

Zel'dovich [2], Zhukov and Kazhdan [ 41. 

4. 'llre behavior of the hydrodynamic qllantities close to the 

piston. Let us consider in more detail the behavior of the hyflro:lynamic 
quantities near the piston in the case of a motion with n > 1 or a > 2/3. 

For this we shall make use of certain results from paper [ 31. Tn the 

latter paper equations (1.4) were reduced for the study of tire sllarp 1~10~ 
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to the single equation 

(4.1) 

by means of the substitutions 

y z Y y-n-1 -- 

f = zY+l ,y+1 , v = uzY+l 5 y+1 

Ilere the integral curve corresponding to the sharp blow was found from 

the condition that it passes through the singular point of the equation. 

?he singular point in the variables u, .z has the coordinates 

Let us pass now to the independent variable x and the function j. Tne 

relation between these quantities at the singular point is 

Y 

rC~+)'+'zsz 
(4.2) 

ff we know the behavior of the pressure j(x) in the case of the sharp 

blow, then we can find x corresponding to the singular point. This 

singular point is a saddle. Ckre of the separatrices of the saddle is the 

integral curve corresponding to the sharp blow. In this case all the 

hydrod~~ic quantities at the singular point are continuous and smooth. 

On the other hand, we can consider the singular point as the site of 

a weak discontinuity and continue the function j(x) beyond the singular 

point along the other separatrix. It is then found that j(r) increases 

with decreasing .x and is equal to a finite quantity when x = 0. This 

branch is the solution of the problem of motion under the action of a 

pressure on the piston decreasing according to the law p = Ifa, where 

a = 2n/(2 + n) and n is the index of the similarity solution for the 

sharp blow. 'Ihe fact that the solution with the other separatrix corres- 

ponds to the piston is confirmed by the following argument. In the case 

II = 1 the piston moves backwards (the velocity is negative), slowing 

down. 'Ihis means that [~u/~t > 0. 'Ihen from the equation of motion ~u/dt - 

- PO -’ +/ax, it follows that dpfax < 0. Accordingly, the general shape 

of the pressure profile from the shock front to the piston is not mono- 

tonic. 'Ihe pressure profile from the shock front to the piston first of 

all decreases, then passes through a minimum, and increases again close 

to the piston. In fact, if we choose the solution for the motion with the 

piston, a figure is obtained in the form of a broken curve, consisting of 
two separatrices. As an example, we can cite the case y = 7/S, which is 

convenient as there is an analytical solution for this case. 
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'lhe singular point in the u, 
2 = l/7, f = (1/7)7'W1'l*, 

z variables has coordinates u = - 2 \/ S/6, 

x = (l/7)3'* z.S 0.054. 
and since in the given case f = x, then 

Ike branch corresponding to the piston has no analytical solution. 

From numerical computations it follows that f(x) increases from f= 0.054 

at the singular point to f = 0.1101 at tire piston. Let us notice that 

dp/dx = 0 at the piston in the case IL = 1 (Sedov's case) and c?p/tlx > 0 
when n < 1. 

Accordingly, the pressure profile fails to be monotonic only when 

l< n < nl, where n1 corresponds to the sharp blow. 

Let us explain the physical significance of the singular point. For 

this, we must make a transformation from Lagrangian coordinates to 

Eulerian. Let [ be the ratio of the runDing Eulerian coordinate to the 

coorflinate of the shock front; the transformation formula is 

E&-j$ 
.x 

(4.3) 

For the case y = 7/S and n = 4,/3, substituting 7 = 6 .x"~, we obtain 

5 = g - $ +, x = (5 - 49-" (4.4) 

For the hydrodynamic quantities and tile adiabatic velocity of sound 

we obtain 

j=L-, 
6 

(5 - 4g" Q = (5 - 45)% 

2'== J/$(25--1), c = li/2(5-45) (4.5) 

Let z anal Z be the running Eulerian coordinate and that of the shock 

front, so that t = z/Z. It is known that Z = Atlea”, 

The constant A is not difficult to find, using the relations at the 
front of tile shock wave, 

& the other hand, 

Iience A = \/ lo/3 and 

(4.6) 
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Now let us construct the t- t diagram, on which we shall indicate 
certain [-curves and the field of characteristics. Let us write down the 

equation of that family of characteristics which carries disturbances to 

the shock front: 

We have 

dz -=u+c 
dt 

- = [u(5) +c(E)l t-% 
dz 
dt 

(4.i) 

In the case under consideration, equation (4.7) takes the form 

dz 
-z 

dt 
[1/$(2E - 1) + 1/$ (5 - 45) ] t-% (4.S) 

Giving 6 various actual values, we shall obtain the equations of the 

t-curves and the slopes of the characteristics at their intersection with 

the corresponding t-curves. Putting 5 = 1 in formla (4.h), we obtain the 

equation of the shock front: 

and the slope with which the characteristics intersect the shock front: 

The equation of the point at which the motion is generated is also 

represented by the e-curve itself, with 5 = 0. ‘lhe characteristics cut 
it with slope: 

At the singular point 5 = - l/2. For the corresponding c-curve, 

Accordingly, the slope of the characteristic coincides with the slope 
of the c-curve itself, i.e. the c-curve corresponding to the singular 
point is a characteristic. 

In Fig. 4 is represented the form of the field of characteristics for 
the case y = 7/S and n = 4/3 (the curve 1 is the front of the shock wave, 

curve 2 is the e-curve on which dz/dt = 0, curve 3 is the characteristic 
coinciding with the t-curve, and curve 4 is the cavitation front). 

It follows from this field of characteristics that all disturbances, 
other than shock waves, originating to the left of the curve [ = - l/2, 
do not penetrate the region to the right of this curve and do not reach 
the shock front. Accordingly, the region as far as the curve 6 = - l/2 
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on the left can be added not only to the solution corresponding to motion 
with a piston, but also to the solution corresponding to the sharp blow. 

Fig. 4. 

We notice that the branching point slides along the curve f(x) as y 

varies. For incompressible fluid (y = m) it occurs very close to the front 

(x -vO.3), whilst for an misothermalW substance (y = 1) it disappears. 

The pressure at the front of the shock wave cannot fall off more rapidly 

than for the sharp blow, even if the pressure at the piston undergoes a 

more rapid fall. This follows from the fact that the curves describing the 

solution when n > nI of the sharp blow, on leaving the point (1.11, are 

located below the curve for the sharp blow and, failing to reach the piston 

(x = 01, turn in the clirection of increasing x, as depicted in Fig. 5. 

12 

IO 

a8 

a6 

Q-4 

Fig. 5. 

Here curve 1 is the branch corresponding to the piston, curve 2 is the 
branch corresponding to the sharp blow, curves 3 and 4 are branches without 
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physical significance. 

The dashed curve is the continuation in the direction of increasing x 

of the solution describing the motion with a piston when n = nl. .A certain 

physical significance can be ascribed to the branches of these solutions 

from the point (1.1) up to the turning point. They correspond to the 

motion which is generated by the action of a sharp blow and such that the 

gas just behind the shock wave is accompanied by a reservoir capable of 

absorbing the gas. Moreover, the velocity of this motion is such as to 

conserve the fraction of gas absorbed by this reservoir, relative to the 

quantity of gas engulfed by the shock wave, and this is numerically equal 

to the coordinate x of the turning point. 

Different velocities of the motion and different fractions of the gas 

correspond to solutions with different values of n. Such motions are 

realized, for example, in the case of a semi-infinite pipe. If a sharp 

blowimpinges on the gas in the pipe from the open end, then a shock wave 

is propagated along the gas in the pipe, whilst material flows out of the 

open end of the pipe. Here the space outside the pipe constitutes the 

reservoir in which the gas is absorbed. In this case the turning point 

has the Eulerian coordinate (= 0, i.e. the reservoir is stationary at 

the point where the motion is generated. 

In conclusion, the authors express their thanks to I.V. Potugin, V.E. 

Troshchiev and G.A. Grishin for carrying out the numerical computations, 

and to M.A. Podurts for taking part in discussions on the work. The 

authors take this opportunity of thanking Ia.B. Zel'dovich for partaking 

in discussions and for a number of important comnents. 
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